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ABSTRACT
Web archives already hold together more than 534 billion
files and this number continues to grow as new initiatives
arise. Searching on all versions of these files acquired through-
out time is challenging, since users expect as fast and precise
answers from web archives as the ones provided by current
web search engines. This work studies, for the first time,
how to improve the search effectiveness of web archives, in-
cluding the creation of novel temporal features that exploit
the correlation found between web document persistence and
relevance. The persistence was analyzed over 14 years of web
snapshots. Additionally, we propose a temporal-dependent
ranking framework that exploits the variance of web char-
acteristics over time influencing ranking models. Based on
the assumption that closer periods are more likely to hold
similar web characteristics, our framework learns multiple
models simultaneously, each tuned for a specific period. Ex-
perimental results show significant improvements over the
search effectiveness of single-models that learn from all data
independently of its time. Thus, our approach represents an
important step forward on the state-of-the-art IR technology
usually employed in web archives.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms; Performance; Experimentation

Keywords
web archives; temporal-dependent ranking

1. INTRODUCTION
Web archive information retrieval (WAIR) addresses the

retrieval of document versions from web archives, according
to topical and temporal criteria of relevance. WAIR differs
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from typical IR and web IR, because a web archive corpus is
distinctively composed by a stack of content collections har-
vested from the web over time. Thus, each document may
have several versions and the relevance of a version depends
on the user’s period of interest. Another main difference of
WAIR is that its multi-version web collections have differ-
ent characteristics over time, which causes variations in the
discriminative power of features used in ranking.

WAIR has been applied in at least 68 web archive initia-
tives1 undertaken by national libraries, national archives and
consortia of organizations that are acquiring and preserving
parts of the web. Web archives already hold more than 534
billion files (17 PB), of which some are historical records,
such as opinions, decisions and photos of events. Pieced to-
gether, these records form our collective memory and the
possibility of looking into the past opens space for novel ap-
plications. In the last years, applications based on data from
web archives include tools for assessing the trustworthiness
of statements [31], detecting web spam [5], improving web IR
[10] or forecasting events [26]. However, despite web archive
technology having achieved a good maturity level, the ef-
fectiveness of the search services they provide still presents
unsatisfactory results [8]. As result, information cannot be
found and web archives are useless for their users.

In this work, we cope with the poor retrieval effective-
ness of web archives by addressing three identified limita-
tions. First, the ranking relevance of document versions is
currently computed based only on the similarity of each con-
tent with the query, ignoring many other features which have
shown to improve web search engines. By employing state-
of-the-art learning to rank (L2R) algorithms on such features
we immediately obtained significant improvements, increas-
ing more than three times the search effectiveness of state-of-
the-art WAIR. Second, web archives preserve many years of
collected web snapshots, but current WAIR approaches ig-
nore the time dimension in such collections. We researched
what relevant information to WAIR can be extracted from
this time dimension, by exploiting, for the first time, the
long-term persistence of web documents. In our experi-
ments, conducted over 14 years of web snapshots, we found
that for navigational queries, relevant documents tend to
have a longer lifespan and more versions. This result enabled
us to obtain significant gains by modeling the persistence of
web documents into novel ranking features. These features
are especially important in web archives, because the query-
independent features typically used to identify popular or
important documents based on click-through data and the

1
http://en.wikipedia.org/wiki/List_of_Web_archiving_initiatives



web-graph, are not available in this context. Web archives
receive a much smaller volume of queries and clicks than
web search engines, and the web-graphs are sparser since
only a small part of the web is commonly collected and pre-
served by each archive. Third, the characteristics of the
web vary over time. For instance, the sites in the 90s did
not have the richer layouts and more interactive interfaces
of the early 00s with CSS and JavaScript. Other examples
include the dynamics of the web link structure, which grows
following a power law [19], and the dynamics of language
in web contents, which have many terms appearing and dis-
appearing every year [29]. We believe that a single general
ranking model cannot predict the variance of web charac-
teristics over such long periods of time. As a result, we
present as the main contribution of this paper, an approach
that learns and combines multiple ranking models specific
for each period. Experimental results show that our ap-
proach outperforms the search effectiveness of single-model
approaches that fit all data independently of when it was
created or updated. We refer to our approach as temporal-
dependent ranking.

The remainder of this paper is organized as follows. In
Section 2, we cover the related work. Section 3 analyzes
the long-term web document persistence, while a temporal-
dependent ranking framework is proposed in Section 4. In
Section 5, we present the experimental setup and report the
results in Section 6. Section 7 finalizes with the conclusions
and future work.

2. RELATED WORK

2.1 Web Archives Access
Much of the current effort on web archive development

focuses on acquiring, storing, managing and preserving data
[22]. However, the data must also be easily accessible to
users who need to exploit and analyze them. Full-text search
has become the dominant form of information access, espe-
cially in web search systems, such as Google, which has a
strong influence on the way users search in other settings.
Surveys indicate that full-text search is also the preferred
tool for accessing web archive data and the most used when
supported [7]. Even with the high computational resources
required for this purpose, 67% of world-wide web archives
support full-text search for at least a part of their collec-
tions [13]. However, the large majority of web archives that
support full-text search are based on the Lucene search en-
gine2 or extensions of Lucene to handle web archives, such
as NutchWAX3. The search services provided by these web
archives are visibly poor and frequently deemed unsatisfac-
tory [13]. An WAIR evaluation confirmed the low quality of
search results retrieved with such technology [8]. This last
work, like ours, focus in navigational queries, since this is
the main information need of web archive users [6].

2.2 Temporal Features
Some works leveraged temporal information to improve

full-text search results of web search engines. One of the
most common ideas is incorporating in language models the
heuristic that the prior probability of a document being rel-
evant is higher in the most recent documents [20]. Boosting

2
http://lucene.apache.org/

3
http://archive-access.sourceforge.net/projects/nutch/

the most recent documents is desirable for queries where a
user intends to find recent events or breaking news. The
distribution of the documents’ dates can also be exploited,
since it reveals time intervals that are likely to be of interest
to the query [16]. For instance, when searching for tsunami,
the peaks in the distribution may indicate when tsunamis oc-
curred. Another idea is to favor more dynamic documents,
since documents with higher relevance are more likely to
change or change to a greater degree [10]. More popular
and revisited documents are also more likely to change [1].
On the other hand, the most persistent terms are descrip-
tive of the main topic and likely added early in the life of
a document [1]. These persistent terms are especially use-
ful for matching navigational queries, because the relevance
of documents for these queries are expected to not change
over time. To the best of our knowledge, we are the first
studying the relation between long-term web document per-
sistence and relevance for improving search effectiveness.

2.3 Learning Multiple Models
The L2R framework learns ranking models that fit all

training data. However, a generic model is not always the
best solution and may be overcome by a criteria-dependent
model. For instance, Kang and Kim automatically classified
queries and created a ranking model for each query type
[17]. However, it is often hard to classify a given web search
query due to its small number of terms, which makes this
technique unfeasible in some cases or imprecise when the
wrong model is chosen. To avoid the misclassification prob-
lem, Geng et al. created a ranking model for each query
q by using the k-nearest training queries of q measured by
the similarity of their feature values [12]. The query fea-
ture values were computed as the mean of the feature val-
ues of the top search results ranked by a reference model
(BM25). However, the training time required to create all
these models is quite large and each model is learned with
just a part of the training data. Bian et al. employed a
clustering method to identify a set of query topics based on
features extracted from the top search results [3]. Then, a
ranking model was learned for each query topic. Each query
contributed to learn each model according to the similarity
between the query and the respective topic. Dai et al. fol-
lowed this work, but integrated freshness with relevance to
simultaneously optimize both [9]. In a different work, Salles
et al. created a classification model per time interval and
weighted them based on the temporal distance between the
creation time of documents and the interval [28]. Our work
is the first that learns ranking models taking into account
the specificities of each time period.

3. WEB DOCUMENTS PERSISTENCE
Most ranking models have a static view of web documents

and only consider their last version. We posit that web doc-
ument persistence can be used to create discriminative fea-
tures for improving the performance of ranking models. In
this section, we analyze the correlation between the rele-
vance of web documents and their long-term persistence.

3.1 Collection Description
We chose for this analysis a test collection built for WAIR

research [8]. The general statistics are detailed in Table 1.
This collection includes a corpus with 269 801 assessed web
document versions using a three-level scale of relevance (not-



document versions 255 million
data volume 8.9 TB

date range 1996 to 2009
navigational queries 50

average query length 2.23
assessed document versions 269 801

assessment scale of relevance 3-level

Table 1: Test collection statistics.
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Figure 1: Distribution of the lifespan of documents
in years.

relevant, relevant and very relevant). The assessed docu-
ment versions were returned by different ranking models in
response to 50 navigational queries randomly sampled from
the logs of a public web archive. This selection strategy
enables to get a high coverage of relevant documents, es-
pecially because navigational queries tend to have only one
(very) relevant document. The queries have 2.23 terms on
average and 1/3 are restricted by date range.

The documents range over a period of 14 years, from 1996
to 2009. Such characteristics make this collection unique to
study long-term persistence of web documents and their re-
lation to relevance ranking. For instance, to study content
change, Elsas and Dumais used a collection of 2 million doc-
uments crawled for a period of 10 weeks [10], Adar et al.
used 55 thousand documents crawled during 5 weeks [1],
Fetterly et al. crawled 150 million documents over a period
of 11 weeks [11] and Ntoulas et al. 150 web sites over the
course of 1 year [24]. These are much shorter periods of
analysis not so adequate to this study.

3.2 Document Persistence
We analyzed the persistence of web documents measured

by their lifespan (i.e. difference in days between the first
and last versions) and their number of versions. For simpli-
fication, we identified the versions of a URL by comparing
their MD5 checksums.

Figure 1 shows the lifespan distribution of web documents.
Around 36% of documents have less than one year and hence,
we assigned a lifespan of 0 years. This percentage is inferior
to the 50% reported by Ntoulas et al. [24]. 14% have a
lifespan between 1 and 2 years and near 8% have a lifespan
longer than 10 years. Figure 2 shows the distribution of the
number of versions of documents. Around 36% have just 1
version, 29% have between 2 and 10, and 35% have more
than 10.

The lifespan and number of versions present different dis-
tributions. While the number of versions fits a logarith-
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Figure 2: Distribution of the number of versions of
documents over 14 years.

mic distribution, the lifespan resembles a long tail distri-
bution. When inspecting the documents, we saw that the
document with most versions is the homepage of a news-
paper (http://www.correiomanha.pt/) with 1301 versions
and a lifespan of 12 years and a half. The document with
the longest lifespan contains a list of scientific books for
the younger (http://nautilus.fis.uc.pt/softc/Read_c/
l_infantis/infantis.html) with a lifespan of 13 years and
2 months, but with just 8 versions. While all the documents
with the highest number of versions have a long lifespan,
the opposite is not true. In fact, the top ten documents
with the longest lifespans have less than 15 versions. The
Pearson correlation coefficient between the number of ver-
sions and the lifespan of web documents is 0.52.

3.3 Document Persistence & Relevance
We found some interesting patterns when analyzing the

relationship between the long-term persistence of web doc-
uments and their relevance. Figure 3 shows the fraction of
documents that have a lifespan longer than 1 year for each
relevance level, i.e. the number of documents with a given
relevance level and a lifespan longer than 1 year, divided
by the total number of documents with that same relevance
level. The figure shows that these documents are likely to
have a higher relevance. The same correlation exists for
documents between 1 and 5 years. The percentage of very
relevant documents with more than 5 years is only 1% of the
total documents for the 50 queries analyzed, which makes
it difficult to identify any meaningful correlation. Neverthe-
less, the sum of the relevant and very relevant fractions of
documents is always superior to the not-relevant when con-
sidering the documents with a lifespan longer than 1 year.
This indicates that the relevant documents tend to have a
longer lifespan.

Figure 4 shows the fraction of documents that have more
than 10 versions for each relevance level. These documents
tend to have a higher relevance, such as the documents be-
tween 1 and 30 versions. The percentage of very relevant
documents with more than 30 versions is only 1% of the
total documents for the 50 queries analyzed. The 1% is
the threshold where once again the correlation starts to be
insignificant. However, the sum of the relevant and very
relevant fractions of documents is always superior to the
not-relevant when considering until 300 versions. After this
number, the 4% of remaining documents present a differ-
ent pattern. Even so, in general, these results indicate that
relevant documents tend to have more versions.
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Figure 3: Fraction of documents with a lifespan
longer than 1 year for each relevance level.
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Figure 4: Fraction of documents with more than 10
versions for each relevance level.

3.4 Modeling Document Persistence
The lifespan and number of versions of documents are not

correlated between them, but both are correlated with the
relevance of documents. Hence, to leverage this correlation
we modeled these measures of persistence with a logarithmic
function that gives a higher score to: (1) documents with a
longer lifespan; (2) documents with more versions. Both are
defined by the same function:

f(d) = logy(x) (1)

where, for the first case, x is the number of days between
the first and last versions of document d, and for the second
case, x is the number of versions of document d. The y is
the maximum possible x for normalization. This is just an
example of a function that can be used to create ranking
features, such as these two features that we will use ahead
in this study.

4. TEMPORAL-DEPENDENT RANKING
In this section, we present our temporal-dependent rank-

ing framework for improving search effectiveness. First, we
formalize the ranking problem. Second, we explain how to
divide the training data by time, and third, how to use these
data to create temporal-dependent models. Fourth, we de-
scribe how to learn all models simultaneously and how to
combine them to produce a final ranking score. Last, we
present how to implement our framework.

4.1 Ranking Problem
The traditional ranking problem is to find a ranking model

f with parameters ω that receives X as input, where X is
an m×d matrix of m query-document feature vectors of size

d. This model f produces a vector ŷ of m ranking scores,
one per query-document pair < q, d >, trying to predict the
real relevance of document d for query q:

ŷ = f(X;ω) (2)

Manually finding and optimizing f is a laborious and prone
to error work, especially when f combines multiple features.
Hence, L2R algorithms automatically learn the best model
f̂ , such that f̂ minimizes the given loss function L:

f̂ = arg min
f∈F

m∑
i=1

L(f(Xi;ω), yi) (3)

where Xi represents the ith query-document feature vector
and yi the corresponding relevance label. As Eq. 3 shows,
the typical L2R outcome is a single general model that ranks
documents independently when they were created or up-
dated.

4.2 Temporal Intervals
Contrary to the traditional ranking problem, we learn

multiple ranking models, each taking into account the spe-
cific characteristics of a period. In order to achieve that, we
first identify a set of temporal intervals T = {T1, T2, ..., Tn},
from which we then learn multiple ranking models M =
{M1,M2, ...,Mn}. Each interval Tk has associated a set of
query-document feature vectors for training, where each fea-
ture vector Xi belongs to Tk if and only if the timestamp of
the respective document version ti ∈ Tk.

There are several timestamps associated to a document
version, such as the dates of creation, modification, crawl-
ing or archiving. The creation and modification dates are
good choices, since they refer to the time when a version
was created. However, identifying them is not straightfor-
ward. The metadata from the document’s HTTP header
fields, such as Date, Last-Modified and Expires are not al-
ways available, nor reliable. Studies estimate that from 35%
to 64% of web documents have valid last-modified dates [14],
but these percentages can be significantly improved by us-
ing the dates of the web document’s neighbors, especially of
web resources embedded in the selected document (e.g. im-
ages, CSS, JavaScript) [25]. Nevertheless, for simplification,
in this work we adopted the crawling date.

4.3 Temporal-Dependent Models
It is hard to establish clear temporal boundaries in web

data, because the ranking features tend to change gradu-
ally over time rather than abruptly. Thus, a model Mk is
learned using all training instances of all intervals T , but
each training instance contributes with a different weight to
the learning of Mk. The instances of interval Tk contribute
with a maximum weight, while the instances of other in-
tervals Tj 6= Tk contribute with a weight defined by their
temporal distance to Tk. Consider Figures 5(a), 5(b) and
5(c) as illustrative examples. They depict the weights of a
collection with web snapshots between time points t1 and
t4. Let’s assume that we want to create 3 different mod-
els, M = {M1,M2,M3}, taking into account the different
characteristics of the web snapshots over time. For that,
we divide the collection in 3 time intervals T = {T1, T2, T3}
or T = {[t1, t2], ]t2, t3], ]t3, t4]}. Figure 5(a) shows that the
training instances of interval T1, such as v1, are used with
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Figure 5: Weights of training instances, such as v1, v2 and v3, when learning ranking models (a) M1, (b) M2

and (c) M3.

weight 1 when learning M1, while the other instances receive
a weight that decreases as the timestamps of the instances
move away from T1, such as v2 and v3. Figures 5(b) and
5(c) show the values returned by temporal weight functions
when learning M2 and M3, respectively.

Contrary to typical learning to rank, our goal is to learn
the best model f̂ for a temporal interval Tk, such that f̂
minimizes the following loss function L:

f̂ = arg min
f∈F

m∑
i=1

L(γ(Xi, Tk)f(Xi;ω), yi) (4)

where γ is the temporal weight function. We can adopt
several γ functions with the underlying idea that the weight
decreases as the temporal distance increases, such as the
following function:

γ(Xi, Tk) =

{
1 if Xi ∈ Tk
1− α distance(Xi,Tk)

|T | if Xi 6∈ Tk
s.t. 0 ≤ γ ≤ 1

(5)

where distance(Xi, Tk) is the absolute difference between
the date of document version in Xi and the closer date to
interval Tk, i.e. to the begin or end of Tk. |T | denotes the
total time covered by the collection. The γ function may
have a larger or a smaller slope α to learn ranking models
with higher or lower contribution of the training instances.
For instance, by having a α of 2 instead of 1, the ranking
model will be learned with half the contribution of the train-
ing instances and will ignore the instances in the half most
distant intervals.

4.4 Multi-task Learning
A temporal-dependent model has two advantages over a

model that only learns from data of a segment of time. First,
solutions where each model learns from a part of the training
data tend to present bad performance results, because more
data usually beats better machine learning algorithms [2].
Thus, each temporal-dependent model considers all training
instances during learning, avoiding the problem of the lack
of data. Second, a temporal-dependent model considers the
dependency between datasets of different temporal intervals.
A model will learn more from instances of closer intervals
than from instances of intervals more far apart.

Another important aspect is that we want to minimize
the overall prediction error of all temporal-dependent mod-
els, since all will be employed to rank query results. Hence,
we minimize a global relevance loss function, which evaluates
the overall training error, instead of minimizing multiple in-
dependent loss functions without considering the correlation

and overlap between models, i.e. instead of minimizing Eq.
4 for each model, we minimize:

f̂1, ..., f̂n = arg min
f1,...,fn∈F

m∑
i=1

L(

n∑
j=1

γ(Xi, Tj)fj(Xi;ω), yi) (6)

where n is the number of temporal-dependent ranking mod-
els. The minimization of this global loss function enables
learning all models simultaneously to optimize a unified rele-
vance target. Notice that each training instance Xi is shared
by each model fj and the closer the time interval Tj to Xi
the greater this sharing. Models based on data learned from
time intervals far apart, will share little or no information of
Xi. This is important for distant time intervals do not end
up influencing negatively each other.

After learning all temporal-dependent models, we employ
an unsupervised ensemble method to produce the final rank-
ing score. We run each of the n ranking models fj against
a testing instance Xi multiplied by its temporal weight γ
to the corresponding interval Tj . Then, we sum all scores
produced by all ranking models:

score(Xi) =

n∑
j=1

γ(Xi, Tj)fj(Xi;ω) (7)

This ensemble method follows the global loss function (Eq.
6) used in the learning phase, trying to minimize the overall
prediction error and improve the final search effectiveness.

4.5 L2R Algorithm
Our temporal-dependent ranking framework is quite flex-

ible and can be implemented using different L2R algorithms
as long as we adapt them to use the global loss function of
Eq. 6. We followed the work of Bian et al. and adapted the
RankSVM algorithm [3].

The goal of RankSVM is learning a linear model that min-
imizes the number of pairs of documents ranked in the wrong
relative order [15]. Formally, RankSVM minimizes the fol-
lowing objective function:

min
ω,ξq,i,j

1

2
||ω||2 + C

∑
q,i,j

ξq,i,j

s.t. ωTXq
i ≥ ω

TXq
j + 1− ξq,i,j ,

∀Xq
i � X

q
j , ξq,i,j ≥ 0

(8)

where Xq
i � X

q
j implies that document i is ranked ahead of

document j with respect to query q. C is a trade-off coeffi-
cient between the model complexity ||ω||2 and the training
error

∑
ξq,i,j .



We modified the objective function of RankSVM following
our global loss function, which takes into account the feature
specificities of web snapshots over time. Each temporal-
dependent ranking model Mk is learned by minimizing the
following objective function:

min
ω,ξq,i,j

1

2

n∑
k=1

||ωk||2 + C
∑
q,i,j

ξq,i,j

s.t.

n∑
k=1

γ(Xq
i , Tk)ωTkX

q
i ≥

n∑
k=1

γ(Xq
j , Tk)ωTkX

q
j + 1− ξq,i,j ,

∀Xq
i � X

q
j , ξq,i,j ≥ 0

(9)

5. EXPERIMENTAL SETUP
This section presents our experimental setup that enabled

us to answer the following questions:

1. How much can we improve the search effectiveness of
state-of-the-art WAIR using the L2R framework? We
believe that the observations made in the context of
L2R applied to document retrieval hold in relation to
WAIR, but this hypothesis has not been tested.

2. Do temporal features intrinsic to web archives improve
WAIR, such as the features based on the long-term
persistence of web documents described in Section 3?

3. Does our temporal-dependent ranking framework de-
scribed in Section 4 improve WAIR over a single gen-
eral model that fits all data independently of its time?

Next, we give a brief description of the L2R dataset and
the ranking features used in the experiments. Then, we
present the compared ranking algorithms and models, and
for last, the evaluation methodology and metrics.

5.1 L2R Dataset
The L2R dataset is composed by a set of <query, docu-

ment version, grade, features> quadruples, where the grade
indicates the relevance degree of the document version to
the query. The features represent a vector of ranking fea-
ture values, each describing an estimate of relevance for the
<query, document version> pair.

From the 269 801 <query, document version> pairs as-
sessed in the test collection described in Section 3.1, we ex-
tracted 39 608 quadruples with 68 features. This is the size
of the dataset, which has on average 843 versions per query.
3 queries were excluded from the 50, because their relevant
and very relevant versions did not contain all features.

Table 2 shows the distribution of relevance judgments per
relevance grade. As expected, the number of relevant and
very relevant versions is much less than the not-relevant. No-
tice that for each of these navigational queries there is usu-
ally only one very relevant version and/or one relevant ver-
sion. The dataset is publicly available for research at http:
//code.google.com/p/pwa-technologies/wiki/L2R4WAIR.

5.2 Ranking Features
The effectiveness of the ranking models greatly depends

on the quality of the features they use. We give an overview
of the classes of the 68 features released in the L2R dataset.

Grade
very

relevant
not

relevant relevant

# judgments 4 610 4 357 30 641

Table 2: Distribution of relevance judgments in the
L2R dataset per relevance grade.

Each class exploits a different type of data:

term-weighting features estimate the similarity between
the query and the different sections of a document version
(anchor text of incoming links, text body, title and URL),
such as Okapi BM25 [27].

term-distance features use the distance between terms in
the different sections of a document version to quantify
the relatedness between them, such as the Minimal Span
Weighting function [23].

URL features compute an importance measure based on
the probability of URLs representing an entry page, using
the number of slashes, their length, or if they refer to a
domain, sub-domain or page [18].

web-graph features estimate the popularity or importance
of a document version inferred from the graph of hyper-
links between versions. These features include the number
of inlinks to a version.

temporal features consider the time dimension of the web.
They include the age of a document version and the two
features described in Section 3.4 based on the long-term
persistence of web documents.

Some of these features are typically used in web search
engines and their results have been proven over time. The
temporal features, however, were implemented specifically
for this research. The complete list of features can be con-
sulted online4. All feature values were scaled to a range
between 0 and 1 using a min-max normalization.

5.3 Ranking Algorithms
The way L2R algorithms learn can be categorized into

three approaches: pointwise, pairwise and listwise [21]. We
employed three state-of-the-art L2R algorithms that cover
the three approaches:

pointwise: Random Forests consists of multiple regression
trees, where each tree is built from a bootstrap sample
of the training data and a random subset of features is
selected to split each node of a tree [4]. The relevance
score of each document is the average of the outputs of
the individual regression trees.

pairwise: RankSVM which is described in Section 4.5.
listwise: AdaRank is a boosting algorithm that linearly com-

bines ”weak learners”, which are iteratively selected as the
feature that offers the best performance among all others
[30]. Each new learner focus on the queries not ranked
well on previous iteration, by giving more weight to them.

RankSVM and AdaRank produce linear models, while
Random Forests produce nonlinear models. In all experi-
ments we used the RankSVM implementation available in
the SVMrank software5 and the implementation of the other
two L2R algorithms in the RankLib software6.

4
http://pwa-technologies.googlecode.com/files/featureList.pdf

5
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

6
http://www.cs.umass.edu/~vdang/ranklib.html



5.4 Ranking Models Compared
To compare the search effectiveness of the proposed ap-

proaches we evaluated the following ranking models:

1. Models with manually tuned features: these are
baseline models. For comparison we included the results
of three ranking models with manually tuned features,
obtained from a related work [8]. The first model is
the Okapi BM25 with parameters k1=2 and b=0.75 [27].
The second is Lucene’s term-weighting function7, which is
computed over five fields (anchor text of incoming links,
text body, title, URL and hostname of URL) with dif-
ferent weights. The third is a small variation of Lucene
used in NutchWAX, with a different normalization by field
length. These last two models can be considered the state-
of-the-art in WAIR, since the most advanced IR technol-
ogy currently used in web archives is based on the Lucene
and NutchWAX search engines [13].

2. Models with regular features combined with L2R:
these are another class of baseline models, but based on
the technology usually employed in web search engines.
These models contain all ranking features described in
Section 5.2, except the temporal features. The regular
features were automatically combined using the L2R al-
gorithms to create a single ranking model. These models
are denoted as the single-model approach with regular
features.

3. Models with all features combined with L2R: these
are the same models as in the previous point, but with all
ranking features, regular and temporal. All these features
were automatically combined by L2R algorithms to create
a single ranking model. We refer to these models as the
single-model approach with all features.

4. Models with regular features combined with the
temporal-dependent ranking framework: unlike the
previous models created independently of the time of each
document version, these ranking models were created us-
ing the temporal-dependent ranking framework proposed
in Section 4. The framework used equal intervals of time
with an approximate number of training instances. The
models only contain regular features.

5. Models with all features combined with the tempo-
ral-dependent ranking framework: these are the same
models as in the previous point, but with all ranking fea-
tures, regular and temporal.

5.5 Evaluation Methodology and Metrics
We chose a five-fold cross-validation to compare the aver-

age performance of the different ranking models. The L2R
dataset was divided in five folders, where each folder has
three subsets: training, validation and testing. Each rank-
ing model was created, for each folder, using the training
data. The validation data was used to tune the parameters
of the L2R algorithms and the test data was used only on
the evaluation of the model to avoid overfitting. The final
results are the averages of the five tests.

Each of the 50 evaluated navigational queries may have
one very relevant version and several relevant versions. Con-
sidering this fact, the ranking models were evaluated with
two of the most used evaluation metrics: Precision at three
cut-off values (P@1, P@5 and P@10) and the Normalized
Discount Cumulative Gain at the same three cut-off values

7
http://lucene.apache.org/java/2_9_0/api/all/org/apache/lucene/

search/Similarity.html

(NDCG@1, NDCG@5 and NDCG@10). P@k measures the
relevance of the top k document versions in a ranking list
with respect to a query and is calculated as follows:

P@k =
∑k

i=1 r(i)

k

where r(i) is the relevance of the document version ranked
at position i. Precision works over binary judgments. Due
to that, the very relevant and relevant judgments were both
taken as relevant when using P@k.

NDCG@k handles multiple levels of relevance and gives a
higher score to relevant documents in higher ranking posi-
tions. It is calculated as follows:

NDCG@k = Zk
∑k
i=1

2r(i)−1
log2(1+i)

where Zk is a normalization constant for the perfect list to
get a NDCG@k of 1.

The past experience in web archive assessment has shown
that users do not want to see multiple versions of a URL
on the search results, but rather only one URL with a link
to a list of all the other versions of that URL [8]. This
corresponds to the common behavior already implemented
in the user interfaces of existing WAIR systems. Hence, we
evaluate only the first document version shown in the search
results and ignore all the other versions of the same URL,
before applying P@k or NDCG@k.

6. EXPERIMENTAL RESULTS
In this section we report and discuss the results of the

tested ranking models, summarized in Table 3.

Baselines.
The NutchWAX model performs better than the Lucene

and BM25 models. However, its performance is significantly
worse than the models produced by the L2R algorithms us-
ing regular features. For instance, the model produced with
the Random Forests algorithm, which presents the best re-
sults of the three L2R algorithms, has a NDCG@10 of 0.650,
while NutchWAX gets 0.174. This is more than a three times
increase. All models derived from L2R algorithms achieved
better results than NutchWAX in all metrics with a statisti-
cal significance of p<0.01 using a two-tailed paired Student’s
t-test. This strongly indicates, as expected, that the use of
L2R with ranking features typically used in web search en-
gines, improves the search effectiveness of web archives, but
also that the commonly used WAIR engines have a quite
poor performance.

Temporal features.
All previous models are baselines. Hence, we compared

only against the strongest baseline, i.e. the models with reg-
ular features combined with L2R algorithms. We analyzed
the discriminative power of the temporal ranking features
by running the L2R algorithms with and without these fea-
tures. We can see a clear pattern. The L2R algorithms
almost always present statistically significant improvements
for all metrics when using the temporal features. For in-
stance, Random Forests has a NDCG@1 superior in 10% to
the same algorithm learning without the temporal features
and RankSVM increased 3 percentage points. Therefore,
the temporal features intrinsic to web archives can be used
to improve WAIR.



Metric
models with features models with regular features models with all features

manually tuned combined with L2R combined with L2R

BM25 Lucene NutchWAX AdaRank RankSVM R. Forests AdaRank RankSVM R. Forests

NDCG@1 0.250 0.220 0.250 0.380 † 0.500 † 0.550 † 0.400 † 0.530 †‡ 0.650 †‡
NDCG@5 0.145 0.157 0.215 0.427 † 0.485 † 0.610 † 0.426 † 0.546 †‡ 0.665 †‡
NDCG@10 0.119 0.133 0.174 0.470 † 0.523 † 0.650 † 0.476 † 0.571 †‡ 0.688 †‡

P@1 0.300 0.280 0.320 0.460 † 0.560 † 0.640 † 0.480 † 0.580 †‡ 0.760 †‡
P@5 0.140 0.164 0.236 0.264 † 0.276 † 0.390 † 0.260 † 0.324 †‡ 0.396 †‡
P@10 0.108 0.132 0.168 0.182 † 0.194 † 0.236 † 0.182 † 0.196 † 0.238 †

† shows a statistical significance of p<0.01 against NutchWAX with a two-sided paired t-test, while ‡ shows a statistical significance of

p<0.05 against the models with regular features combined with L2R (i.e. we compare the same model with and without temporal features).

The bold entries indicate the best result achieved in each metric.

Table 3: Results of the tested ranking methods.

Temporal-dependent ranking framework.
Finally, we analyzed the single-model approach versus the

temporal-dependent ranking framework, with and without
temporal features. Figures 6 and 7 show the NDCG@1,
NDCG@5 and NDCG@10 values obtained with the temporal-
dependent ranking framework, when using regular features
or all features. We tested the framework with different time
intervals (1, 2, 4, 7 and 14) and different slopes α in the
temporal weight function (0.25, 0.5, 0.75, 1, 1.25 and 1.5).
Notice that we used a test collection with 14 years of web
snapshots. Thus, when we use 14 or 7 time intervals, it
means that a model is created for each year or two years,
respectively. The use of 1 time interval is similar to creating
just one model, i.e. the single-model approach.

The results show that the proposed temporal-dependent
ranking framework outperforms the single-model approach,
with and without temporal features. We achieved improve-
ments for all time intervals, but the highest improvements
were obtained when we used 4 or 7 intervals. Results de-
picted in Figure 6 without temporal features, show that the
major increase for NDCG@1 was from 0.500 to 0.560 (+6%)
when using 4 and 7 intervals, while for a NDCG@5 was
from 0.485 to 0.551 (+6.6%) and for NDCG@10 was from
0.523 to 0.572 (+4.9%), both when using 4 intervals. Re-
sults depicted in Figure 7 with temporal features, show that
the major increase for NDCG@1 was from 0.530 to 0.590
(+6%) when using 7 intervals, while for a NDCG@5 was
from 0.546 to 0.583 (+3.7%) and for NDCG@10 was from
0.571 to 0.604 (+3.3%), both when using 4 intervals. All
these improvements, which present a statistical significance
(p<0.05), indicate that the values of the ranking features
change considerably over time in a way that can be learned
by ranking models to better differentiate between relevant
and not-relevant documents.

The slope α of the temporal weight function in Eq. 5 has
an important impact in the final results. We obtained the
worst results when α is larger than 1, i.e. when the con-
tribution of the training instances is smaller. On the other
hand, a small α, such as 0.25, caused a larger than desired
contribution of the training instances. The best results were
achieved with α between 0.5 and 1.

The temporal features and the temporal-dependent rank-
ing framework, are independent approaches that demon-
strate promising results. However, both approaches also
work well together. In fact, the results displayed in Figure
7 show that we achieved the best results when we combined

BM25 over all fields
TF-IDF over all fields

Number of versions of a URL
TF-IDF over the hostname of URL

Length of the shortest text with all query terms in title
Days between the first and last versions of a URL

Table 4: Top 6 most important ranking features for
the temporal-dependent ranking framework.

them. The NDCG@1, NDCG@5 and NDCG@10 are supe-
rior in 9%, 10% and 8%, respectively, over the single-model
approach using just regular features.

6.1 Results Analysis
We analyzed why the temporal-dependent ranking frame-

work produces better results than the typical single rank-
ing model created by L2R algorithms. We sorted the rank-
ing features by their importance, measured by the absolute
weight assigned by RankSVM. We found that the top fea-
tures are almost the same, whether using just one model
or multiple temporal-dependent models. The difference be-
tween ranking models created for different time intervals lies
on small changes in the weights of features. This finding cor-
roborates our observations that the characteristics of web
documents evolve smoothly rather than abruptly and the
temporal-dependent ranking models can adjust the feature
weights to provide fine-grained ranking over time.

Table 4 shows the top 6 most important ranking features
for the temporal-dependent ranking framework. From this
table, we can see that BM25 and TF-IDF over all fields
are the features with higher weight. The features based on
long-term persistence of web documents, using the number
of versions and the number of days between the first and
last versions, are also at the top. RankSVM weighted some
of these as the best features to identify relevant document
versions for navigational queries.

7. CONCLUSION & FUTURE WORK
The retrieval effectiveness of state-of-the-art WAIR sys-

tems is poor, preventing users from unfolding the full po-
tential of web archives. This work made a few contributions
to face this problem. We studied, for the first time, the
effects of long-term web document persistence in relevance
ranking. In our experiments, conducted over 14 years of
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Figure 6: (a) NDCG@1, (b) NDCG@5 and (c)
NDCG@10 results of the temporal-dependent rank-
ing framework using different time intervals and α
values of the temporal weight function. These mod-
els contain regular features.

web snapshots, we found that relevant documents tend to
have a longer lifespan and more versions. Significant gains
were achieved by modeling these persistence characteristics
of web documents as novel ranking features. Additionally,
since the characteristics of the web vary over time, both in
structure and content, we proposed a temporal-dependent
ranking framework that learns a different ranking model
for each successive web period. Our experimental results
show that the proposed multi-model framework outperforms
a simpler approach based on a single ranking model, when
both use the same L2R algorithms.

This work is focused in WAIR, but we believe that our
approach could bring similar improvements to any digital
libraries dealing with versioned content spanning long peri-
ods. As future work, we intend to study the evolution of
URLs over time and their impact on search, since we de-
tected changes in many URLs’ top-level domains and sub-
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Figure 7: (a) NDCG@1, (b) NDCG@5 and (c)
NDCG@10 results of the temporal-dependent rank-
ing framework using different time intervals and α
values of the temporal weight function. These mod-
els contain regular and temporal features.

domains. By tracking this evolution, we can better measure
the long-term persistence of web documents. We also plan to
investigate how to extend the temporal-dependent ranking
framework to handle temporal diversity in search results.
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