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ABSTRACT
Learning to rank (L2R) algorithms optimize search relevance
by tuning the weights among large pools of ranking features.
However, including more features in the ranking model also
implies a larger implementation effort, more processing time
to rank documents, and in some cases, more index space
to store the features. In addition, as shown in this paper,
more features do not necessarily lead to better relevance. We
analyzed feature selection heuristics to find the best relation
between the number of features and relevance. As a result,
we propose a new heuristic for predicting the upper bound
improvement that an additional feature can add to a feature
set. We show that it is more precise, robust and faster than
previous heuristics. Its application selects at most 15% of
the ranking features used in three LETOR datasets, and
even so, the MAP and NDCG@10 metrics are equally good.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Selection
Process; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

General Terms
Algorithms, Experimentation

Keywords
Information retrieval, learning to rank, feature selection

1. INTRODUCTION
Information retrieval (IR) researchers have proposed many

ranking algorithms that estimate information relevance. Pre-
vious evaluations showed that combinations of ranking func-
tions tend to provide better results than any single function
[1, 2, 13]. An individual function is also more susceptible to
influences caused by the lack or excess of data (e.g. spam).
Therefore, it is advantageous to use different aspects of the
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data to build a more precise and robust ranking model. By
robust, we mean a model capable of coping well with vari-
ations in data. For instance, a document can receive a low
relevance score due to a small query term frequency, but a
high number of inlinks can identify the document as impor-
tant. All these factors must be properly balanced by the
model.

A ranking model estimates the query relevance of a docu-
ment. Documents matching the query are then sorted in de-
scending order by their relevance score, which enables users
to find information efficiently. Thus, the generation of such
model is a fundamental problem in IR. We decompose this
generation in a pipeline of four steps: (1) extraction of low-
level ranking features, such as term frequency or document
length, which are then (2) assembled in high-level ranking
features (a.k.a. ranking functions), such as BM25 [21]; (3)
the most suitable features for a retrieval task are selected
and (4) combined in a way to maximize the results’ rele-
vance. For simplicity, this combination is normally linear,
i.e. for a document d with a vector of low-level ranking fea-

tures associated, ~d, the values produced by the n selected
ranking features are added after each feature fi is weighted
by a coefficient λi and adjusted with a value bi:

rankingModel(~d) =

n∑
i=1

λifi(~d) + bi (1)

The first two steps are well studied and some ranking fea-
tures, such as BM25, are good ranking models alone [14].
Combining them manually is not trivial, specially when the
retrieval task is new or new types of features are considered
(e.g. semantically annotated content). Hence, in the last
few years the fourth step has been concentrating attention.
Supervised learning algorithms have been employed to tune
the weights between combined ranking features, resulting in
significant improvements [12]. However, using more ranking
features does not necessarily lead to higher relevance. In
many cases, features are redundant or irrelevant.

Redundant features overvalue documents, weighting them
multiple times, while irrelevant features produce random dis-
tributions of document relevance scores, confusing machine
learning algorithms and degrading results [7]. Most learning
algorithms are susceptible to this randomness. By remov-
ing redundant and irrelevant features, the ranking model
is simplified, which tends to avoid overfitting (fits training
data closely, but fails to generalize to unseen test data),
improves relevance, reduces data and speedup learning al-
gorithms. By using fewer ranking features, search engines



can respond faster to users’ queries. Search engines can also
reduce their indexes if these contain the data of the features
that are to be excluded. Space and speed are two of our
main concerns, since we are developing a web archive with
full-text search over collections with hundreds of millions of
documents [6]. The other concern is reducing the effort for
creating a precise and robust ranking model. Implementing
dozens of ranking features for the model is time consuming
and laborious. Thus, we are willing to lose some relevance
in exchange of a large reduction in the number of features.

Our study focuses on feature selection for ranking, the
third step of the pipeline. The goal is to find an algorithm
that minimizes the number of features, while keeping the
results’ relevance. Our main contribution is a new, fast and
robust feature selection algorithm for ranking that achieves
this goal better than previous known algorithms.

This paper is organized as follows. In Section 2, we cover
the related work. In Section 3, we describe our algorithm.
The conducted experiments are explained in Section 4 and
results are detailed in Section 5. Ranking model variations
are analyzed in Section 6 and Section 7 finalizes with the
conclusions.

2. RELATED WORK
Feature selection is a common preprocessing step in learn-

ing algorithms for searching an optimal subset of features,
filtering out as much of the irrelevant and redundant infor-
mation as possible. It is a well known problem in classifi-
cation. In ranking, the problem is similar. Both classifica-
tion and ranking select the features most suitable to pro-
duce a highly correlated model with the expected output,
yet with features uncorrelated among them. In classifica-
tion, the learning algorithms produce a classification model
that predicts the class of each document, while in ranking,
the learning algorithms tune the weights between the com-
bined ranking features to produce a model that maximizes
the relevance of ranked lists of documents.

Feature selection algorithms are usually organized in three
categories, depending on how they interact with the learning
algorithms [7]:

filter algorithms perform a preprocessing step indepen-
dent of the learning algorithm. By analyzing only the
general characteristics of the feature data (e.g. statis-
tical dependencies), they compute a goodness measure
of the feature subset, which is fast and enables them
to easily scale to high-dimensional datasets. However,
they optimize the subset toward maximizing a good-
ness measure, instead of maximizing the measure used
to evaluate the final results.

wrapper algorithms use the learning algorithm as a black
box, generating a model that is used to score the fea-
ture subsets. Thus, the search is guided to maximize
the final results, instead of a goodness measure of the
subset. These algorithms tend to produce superior re-
sults, but the training of the learning algorithm is com-
putationally intensive, being impractical for large scale
problems. Another problem is that these algorithms
have a higher risk of overfitting.

embedded algorithms implement the search for the best
subset inside the learning algorithm. Like wrapper
algorithms, the search is aimed at maximizing final

results due to the interaction with the learning algo-
rithm, but have the advantage of being less computa-
tionally intensive. As disadvantage, they are complex
to implement and are intrinsic to the learning algo-
rithm.

In this work, we are mainly concerned with algorithms
that can produce ranking models in feasible time for the
number of features we are currently studying, 64. There
are search engines using a larger number, such as Google
that uses more than 200 features (see http://www.google.

com/corporate/tech.html). Most filter algorithms satisfy
this speed requirement, so we will focus on this category. A
greedy search strategy for wrapping or embedded algorithms
can also be used. In greedy search, each of the non-selected
features is combined with the previously selected features
and the one that improves the results the most is chosen.
The search is iteratively performed until no more features
remain or a stop condition is reached.

Filter algorithms evaluate features either independently
or in a dependent manner. We unfold both approaches.

2.1 Independent Feature Selection
In this approach, the features are independently ranked by

their correlation with the target class (relevance judgment
class) or by some importance measure. Then, those under
a threshold or over a subset size are excluded. The feature
independence assumption makes this the faster approach.

Several measures are used for this purpose, for instance,
statistical measures, such as Chi-squared and ReliefF [22],
or entropy based measures [17], such as Information Gain
(IG) and Symmetrical Uncertainty (SU) [26].

Independent feature selection presents however a major
drawback: it ignores that a feature that is useless on its
own may still provide a significant improvement when com-
bined with others. For instance, query-independent ranking
functions produce a static importance score per document,
resulting in a bad correlation with the target class. As re-
sult, these functions are not selected. However, some query-
independent ranking functions, such as PageRank [18], are
among the preferred algorithms to include in a web ranking
model [2].

2.2 Dependent Feature Selection
The search for the best subset of features can follow dif-

ferent strategies, such as exhaustive or greedy searches. A
common heuristic is using a goodness measure of the subset,
based on a tradeoff between features’ relevance and correla-
tion. Hall developed the Correlation-based Feature Selection
(CFS) algorithm [8]. It calculates for a feature subset S of
size k, the correlation average of all its features with the
target class, τtf , and the correlation average between all its
features, τff . Correlations are measured with SU and both
averages are used in the Merit function:

Merit(S) =
kτtf√

k + k(k − 1)τff

The goal is to maximize the numerator, while minimiz-
ing the denominator. The algorithm executes a best-first
search, where a new feature fi is iteratively added to S, if
for any other feature fj not selected, Merit(S + {fi}) >
Merit(S + {fj}) and Merit(S + {fi}) > Merit(S). The
best-first search is a breadth-first search that follows the



best paths. The algorithm stops after the consecutive paths
result in no improvement over S.

Yu and Liu developed the Fast Correlation Based Fil-
ter (FCBF) [25]. A feature fi is considered irrelevant if
SU(fi, t) < δ, being δ a threshold and t the target class. In
an analogous way, two features fi and fj are redundant if
SU(fi, fj) > δ. The algorithm avoids all pairwise compar-
isons by ordering all the features by their SU(fi, t). Then
it iteratively selects the top feature fi and removes the next
features fj , while SU(fi, fj) > SU(fi, t).

Dash et al. developed the Consistency filter algorithm
to evaluate feature subsets based on an inconsistency mea-
sure [3]. An inconsistency occurs when two instances of the
dataset have the same values, but different target class val-
ues. These cases create randomness, reducing the discrimi-
nating power of the selected features. The ratios of incon-
sistency are the selection criteria to choose the best subset.
Inconsistency, denoted U , has an interesting characteristic,
monotonicity, which guarantees that if Si ⊇ Sj ⇒ U(Si) ≤
U(Sj), for any subsets Si and Sj . Hence, the less incon-
sistent subset will contain all the features and the search
method will try to find the smallest subset with similar
inconsistencies, removing one feature at a time (backward
elimination).

The INTERACT algorithm is an extension of the Con-
sistency algorithm, which first sorts all the features by their
SU(fi, t) and then iteratively tests the feature with the small-
est SU(fi, t) [28]. The feature is maintained if removing
it increases the inconsistency above a threshold. The al-
gorithm focuses on the selection of the features that most
contribute to the consistency of the dataset.

Geng et al. developed the GAS algorithm [5]. As far as
we know, it is the only filter feature selection algorithm de-
veloped for ranking. Contrary to previous algorithms, GAS
uses relevance measures to identify relevant features: the
Mean Average Precision (MAP) [14] and the Normalized
Discount Cumulative Gain (NDCG) [9]. It also uses loss
functions. For redundancy identification it uses the Kendall
τ correlation coefficient. The redundancy of the features
is parameterized as a proportion of the features’ relevance.
Using a greedy algorithm and satisfying the condition that
at each iteration a new feature is added to the previous sub-
set, i.e. St+1 ⊃ St, they find an optimal solution for their
goodness measure of the subset.

2.3 Feature Selection Limitations on Ranking
Almost all feature selection algorithms have been devel-

oped for classification. Using them for ranking straightfor-
wardly penalizes results. The more symptomatic differences
are:

1. The relevance of a document is query-dependent. Hence,
feature selection algorithms for ranking must perform
a per query analysis, while the algorithms for classifi-
cation use the query identifier as any other feature.

2. The metrics to evaluate classification and ranking al-
gorithms are different. While in classification precision
and recall are both important (e.g. F-measure), preci-
sion is usually more important for ranking (e.g. MAP).

3. Usually, a goodness measure designed to evaluate fea-
ture subsets is a tradeoff between the relevance of the
features (their sum) and their redundancy (their pair-
wise sum). Correlation takes a crucial importance in

the evaluation, since redundancy is measured as the
correlation between features values, and relevance, in
some cases, as the correlation of feature values with
the target class. The problem is that a correlation
between two features, measures in the same way, but
erroneously, the discrepancies at the top and bottom
of the ranking. New correlation measures for informa-
tion retrieval, such as the proposed by Yilmaz et al.,
address this ranking order problem [24].

3. FEATURE SELECTION ALGORITHM
We created a supervised filter feature selection algorithm

for ranking that overcomes the limitations pointed in Sec-
tion 2.3: the features are separately analyzed for each query
and the implemented heuristic is driven by a relevance mea-
sure, such as MAP, instead of a goodness measure based on
ranking correlations.

We will start by explaining the heuristic to estimate the
ranking that would result from optimally combining two fea-
ture sets in a ranking model and then we will detail the
proposed algorithm.

3.1 Estimating the Optimum Combination
Our heuristic is based on the following assumptions:

1. L2R algorithms maximize search relevance and studies
demonstrated that they produce good results [12]. As-
suming a linear combination of features as exhibited in
Equation 1, L2R algorithms will tune the λi and bi val-
ues associated to each feature fi to produce a ranking
with all relevant documents ahead of the nonrelevant
or the closest to this ranking.

2. Ranking features are monotonic functions, meaning
that the more relevant a document is with respect to
a query, the higher is its feature value. Thus, for each
feature fi the λi must be positive to guarantee the
monotonicity.

3. If a document dy occurs ahead of a document dx in
all the ranking features, i.e. ∀fi ∈ F, fi(dy) > fi(dx),
then this precedence is maintained in the ranking of F .
Equation 1 shows that it is necessary at least one fea-
ture fi ranking results in the inverse order, to multiply
a positive λi with a value large enough to invert the
order of the two documents ranked by F . We also as-
sume that if two documents occur only in one ranking,
then this precedence must be maintained because their
values on the other ranking are too small to enable a
λi to invert their order.

Summarizing, we assume that in an optimum case, L2R
algorithms will rank all relevant documents ahead of the
nonrelevant, except on the cases of the third assumption.
Based on this, we estimate the ranking produced by the lin-
ear combination of the rankings of two feature sets. Itera-
tively, we select from the two rankings, the minimum length
sequence of nonrelevant documents followed by a sequence
of relevant documents. Both sequences are selected. This
way, we guarantee two things: (1) the relevant documents
will be ranked as close to the top as possible; and as a conse-
quence, (2) the number of relevant documents ahead of the
nonrelevant is maximized. Naturally, the linear combina-
tion of ranking features given by the λ coefficients does not



always allow arbitrarily switching between both rankings to
pick the best sequence of documents. However, as we do
not know the λ coefficients, we assume the best case that a
linear combination would possibly achieve. Our heuristic is
not too far from reality. An experiment with 1000 random
pairs of features showed an average Kendall τ correlation of
0.6 between the rankings produced by our heuristic and the
rankings produced from the L2R algorithm SVM-MAP [27].

Algorithm 1 BestCombinationRankings(Rbest,Rfj )

1: pbest ⇐ −1
2: pfj ⇐ −1
3: Rcomb ⇐ ∅
4: while pbest < size(Rbest) OR pfj < size(Rfj ) do

5: dbest ⇐ distanceToNextRelevant(pbest, Rbest)
6: dfj ⇐ distanceToNextRelevant(pfj , Rfj )

7: if dbest <= dfj then

8: Rcomb ⇐ Rcomb
⋃
Rbest[pbest + 1, pbest + dbest]

9: pbest ⇐ pbest + dbest
10: else
11: Rcomb ⇐ Rcomb

⋃
Rfj [pfj + 1, pfj + dfj ]

12: pfj ⇐ pfj + dfj
13: end if
14: end while
15: Rcomb ⇐ Rcomb

⋃
Rbest[pbest + 1, size(Rbest)− 1]

16: Rcomb ⇐ Rcomb
⋃
Rfj [pfj + 1, size(Rfj )− 1]

17: return Rcomb

Algorithm 1 details our heuristic for estimating the opti-
mum ranking that one could obtain when combining a fea-
ture set with a new feature, given their ranked result lists.
The algorithm starts by assigning indexes, pbest and pfj ,
to the head of each ranking list, Rbest and Rfj (lines 1-2).
Then, iteratively, while at least one of the indexes p does
not reach the end of its corresponding ranking R, the mini-
mum distance is calculated from p to the position of the next
relevant document in R (lines 4-6). The ranking of R with
the minimum distance d is selected, its next d elements are
added to Rcomb (d− 1 nonrelevant and 1 relevant) and p is
incremented by d (lines 7-13). Note that, if no more relevant
documents exist in a ranking, then the minimum distance
will be set to a number larger than the ranking sizes. Thus,
only when there are no more relevant documents in the two
rankings, the remaining nonrelevant documents are added
to Rcomb (lines 15-16). Note also that the documents al-
ready picked from one ranking are ignored for any further
processing on the other ranking.

3.2 Greedy Algorithm
The estimate of the ranking that would result from the

optimum combination between two rankings, as described in
the previous section, enables us to calculate the maximum
gain that a feature fi can give to a feature subset Sbest. The
gain is calculated as the difference between the relevance
values (e.g. MAP) of the estimated rankings from subsets
Sbest+{fi} and Sbest. A small gain is a clear indication that
adding this feature will not improve the results’ relevancy.
Despite our heuristic not providing a very close estimate, it
enables us to safely discard the features that have an upper
bound gain smaller than our lower threshold.

The main idea of our algorithm, called BestGain, is to se-
lect in each iteration, the feature fi that leads to the highest
gain when combined with the previously selected features,
Sbest. In this way, we quantify how much a feature fi can

complement Sbest, by shifting up or bringing in new relevant
documents for the top positions. For instance, a duplicated
feature will not produce any gain, which implies its exclu-
sion. The algorithm will stop selecting features when the
gain offered by the remaining features is too small. This
works exactly like a greedy wrapper algorithm, with the
difference that instead of computing the optimized ranking
from a L2R algorithm, we compute a best case estimate,
which is much faster to compute. We try to combine the
best of two worlds: the fastness of filter algorithms with the
superior results of the wrapper algorithms.

Algorithm 2 BestGain

1: fi ⇐ argmaxfiRelevance(ranking(fi))
2: F ⇐ F \ {fi}
3: Sbest ⇐ {fi}
4: Rbest ⇐ ranking(fi)
5: repeat
6: for j = 1 to |F | do
7: for q = 1 to |Q| do
8: Rj ⇐ BestCombinationRankings(Rbest, ranking(fj))

9: gainj ⇐ gainj +
Relevance(Rj)−Relevance(Rbest)

|Q|
10: end for
11: end for
12: fk ⇐ argmaxfkgaink

13: F ⇐ F \ {fk}
14: Sbest ⇐ Sbest

⋃
{fk}

15: Rbest ⇐ Rk

16: until gaink < δ
17: return Sbest

Algorithm 2 details all the steps. It starts by selecting the
feature fi yielding the highest Relevance value (e.g. MAP)
and moving it from the subset F containing all the features
to the final subset Sbest (lines 1-3). Then, the ranking of
fi is stored. For each of the remaining features fj in F ,
it combines for each query q, the ranking of fj with the
best ranking achieved until that moment, Rbest (lines 6-8).
The gain is calculated as the average difference between the
Relevance values of the rankings from subsets Sbest + {fi}
and Sbest (line 9). The feature fk that produces the highest
gain is added to Sbest and its combined ranking assigned
to Rbest (lines 12-15). This ranking is iteratively improved
with new features, until the gain is smaller than a threshold
δ.

Having one ranking model implies that the features must
be combined in the same manner for all queries. However,
we applied the best linear combination for each query, which
is not realistic, but guarantees a valid upper bound gain.

4. EXPERIMENT SETUP

4.1 Datasets
Experiments were performed over the LETOR version 3.0,

which has been defined as benchmark for ranking [13, 16].
The focus of this benchmark is to normalize tests between
L2R algorithms. We found that it can has the same pur-
pose for feature selection applied to ranking. New feature
selection algorithms can be compared under the exact same
conditions. LETOR aggregates IR test collections, includ-
ing query sets, relevance judgments, evaluation metrics and
evaluation tools. In addition to that, it extracts differ-
ent low-level and high-level feature values for each <doc-
ument, query, relevance judgment> triple, eliminating the



dataset collection q f rel instances
TD2003 .gov 50 64 2 49058
TD2004 .gov 75 64 2 74146

OHSUMED ohsumed 106 45 3 16140
q=number of queries; f=number of features; rel=levels of relevance

Table 1: Datasets used in experiments.

usual parsing and indexing difficulties. The results of some
state-of-the-art L2R algorithms are also provided for a direct
comparison.

On the experiments, we used three datasets included in
LETOR and summarized in Table 1. The TD2003 and
TD2004 datasets are the topic distillation tasks from TREC
2003 and TREC 2004 web tracks. Both datasets include the
.gov collection, composed by a crawl of .gov web sites in early
2002, containing 1,053,110 HTML documents. The datasets
also include 50 and 75 queries, respectively. For each query,
the framework extracted values from 64 features for all top
1000 documents returned by BM25 [21], with binary judg-
ments (relevant or nonrelevant) associated. The features are
for example, the number of inlinks, TFxIDF [14] and BM25
functions over different fields (URL, title, anchor and body)
and PageRank [18] (see [16] for a detailed list).

The OHSUMED dataset contains a collection from MED-
LINE, a database on medical publications. This dataset
contains 348,566 records from 270 medical journals over a
five-year period (1987-1991). The fields of the records in-
clude title, abstract, MeSH indexing terms, author, source,
and publication type. It contains 106 queries with judged
documents using a three level scale: definitely, possibly, or
not relevant. LETOR extracted values from 45 features for
all the judged documents [16].

4.2 Feature selection algorithms
We tuned and tested three feature selection algorithms

designed for ranking: our BestGain algorithm using MAP
as the relevance measure; the GAS-E algorithm, which is
the GAS algorithm using MAP to measure relevance and
Kendall τ to measure correlation [5]; and the greedy Wrap-
per algorithm, exactly like Algorithm 2, but using a L2R
algorithm instead of Algorithm 1 in line 8. The first two are
filter algorithms, while the last is a wrapper algorithm.

For comparison, we tested four state-of-the art algorithms
for feature selection used in classification: FCBF, CFS, Con-
sistency and INTERACT, described in Section 2. They were
computed with WEKA, a machine learning framework im-
plemented in JAVA [23]. INTERACT was downloaded from
[28]. No tuning was performed over these algorithms. We
used WEKA’s default parameters.

4.3 Learning to rank algorithms
The relevance of a ranking model is evaluated after learn-

ing the weights between the ranking features. We used the
SVM-MAP algorithm, a Support Vector Machine (SVM) al-
gorithm extended to ranking with a hinge loss relaxation of
MAP loss [27]. The optimal C coefficient for this algorithm,
the one that controls the tradeoff between the model com-
plexity and the hinge loss relaxation of MAP loss, was pa-
rameterized with the optimal values found to produce the
LETOR results (see http://www.yisongyue.com/results/

svmmap_letor3/details.html). These results are our Base-
line, since it contemplates all features.

4.4 Evaluation Methodology and Metrics
We chose a five-fold cross-validation of the algorithms.

The datasets were divided in five folders, having each folder
three subsets: one for training, one for validation and one
for testing. For each folder, the algorithm created a ranking
model using the training data. The validation data was
ignored, since we used the optimal parameters found for
SVM-MAP. The test data was used only on the evaluation
of the model, to avoid overfitting and biased estimates of
the model [19]. The final results are the averages of the five
tests.

The algorithms were evaluated with the Mean Average
Precision (MAP) [14] and the Normalized Discount Cumu-
lative Gain at 10 (NDCG@10) [9], two of the most used met-
rics to evaluate ranking models. Both attribute more weight
to the top results. NDCG@10 restricts the evaluation to the
top 10 results.

MAP works over binary judgments, while NDCG handles
multiple levels of relevance. Due to that, the three levels of
relevance for judging OHSUMED were converted into only
two when using MAP. The definitely and possibly relevant
judgments were both taken as relevant.

5. RESULTS
In this section we experimentally evaluate various aspects

of the feature selection algorithms. We also compare it
against the Baseline without feature selection (i.e. using all
features). All results from the tested algorithms are aggre-
gated in Table 2, divided by metric, dataset, algorithm pur-
pose (classification or ranking) and feature selection taxon-
omy (filter or wrapper). Each result is the average between
the five tests executed due to the five-fold cross validation.

5.1 MAP and NDCG@10 Evaluation
Table 2 shows that the algorithms designed for ranking

present better MAP and NDCG@10 than the algorithms de-
signed for classification. The exception is the Consistency al-
gorithm, which works surprisingly well in the three datasets.
However, it selects much more features. The three algo-
rithms designed for ranking also exceed, slightly, the Base-
line in most of the datasets with much less features. Best-
Gain has the best MAP and NDCG@10 averages over the
three datasets. The differences between the BestGain and
GAS-E are not significant to identify the best algorithm. On
the other hand, the differences to the Wrapper are larger.
The Wrapper presents the best MAP and NDCG@10 for the
TD2004 and OHSUMED datasets. However, it overfits on
the TD2003 dataset, presenting poor results.

5.2 Number of features
The algorithms designed for ranking select less features

than the algorithms designed for classification (see Table 2).
The exception is the FCBF algorithm, but it presents the
worst MAP and NDCG@10 from all the tested algorithms.
The BestGain and the Wrapper algorithms always select at
most 15% of the features. It is noteworthy that the Best-
Gain presents better NDCG@10 for the OHSUMED than
the Baseline, selecting just one feature. The GAS-E fails to
select few features on the TD2003 dataset. It selects 49.2
features from the 64, which is much more than the selected



Metric Dataset

classification ranking

Baseline
filter wrapper

FCBF CFS Consistency INTERACT GAS-E BestGain
Greedy

Wrapper

MAP

TD2003 9.51% 17.08% 25.20%∗ 20.64% 24.86%∗ 25.74%∗ 20.71% 24.45%

TD2004 15.77% 18.16% 20.32% 17.13% 20.04% 20.33% 23.00%∗ 20.49%

OHSUMED 42.24% 43.34% 44.09% 44.16% 44.72%∗ 44.00% 45.08%∗ 44.53%

avg. 22.51% 26.19% 29.87%∗ 27.31% 29.87%∗ 30.03%∗ 29.60% 29.82%

NDCG@10

TD2003 14.27% 23.32% 32.25% 26.47% 32.07% 33.42%∗ 24.65% 32.82%

TD2004 22.49% 25.42% 28.79% 24.03% 29.39%∗ 30.62%∗ 32.42%∗ 29.07%

OHSUMED 38.82% 40.40% 42.18% 42.41% 45.30%∗ 44.32%∗ 45.40%∗ 43.19%

avg. 25.19% 29.71% 34.41% 30.97% 35.59%∗ 36.12%∗ 34.15% 35.02%

# features

TD2003 3.8 15 30.6 20.6 49.2 9.8 4.2 64

TD2004 3 12.8 27.8 18 2.4 2.2 6 64

OHSUMED 1 4.2 35 34.8 2.6 1 2 45

avg. 2.6 10.7 31.1 24.5 18.1 4.3 4.1 57.7

time (min)

TD2003 0.6 1.1 21.9 1.2 0.18 (+238) 1 241.2 -

TD2004 1 1.6 60 3.9 0.16 (+271) 1.6 215.8 -

OHSUMED 0.1 0.1 1.9 0.3 0.08 (+40) 0.4 53.8 -

avg. 0.6 0.9 27.9 1.8 0.14 (+183) 1 170.3 -
∗ indicates that results are higher than the baseline

Table 2: Results for feature selection algorithms.

by the other two algorithms. We saw that GAS-E degrades
the ranking results when it subtracts the correlation between
features, so the tuned algorithm mostly ignores the correla-
tion.

The number of features selected can be compared to the
reported by Metzler in experimenting his feature selection
wrapper algorithm for ranking [15]. His best results have
ranking models with at most five features. However, the
datasets and evaluation methodology used in this evaluation
are different.

5.3 Computational Time
The computation times of each algorithm are detailed in

Table 2. Algorithms run on an Intel quad-core machine at
2.33GHz and 8GB of RAM. All algorithms are fast, run-
ning in average in less than two minutes. The exception
for the classification-based algorithms is the Consistency al-
gorithm, which requires around half an hour to select the
features. The exception for the ranking-based algorithms is
the Wrapper algorithm, which takes more than two hours.
The complexity of the greedy Wrapper algorithm is the same
complexity of the BestGain. It will require O(n2) steps for
n features. However, as the results show, the learning in
each step of the Wrapper increases extremely the comput-
ing time. Optimizing the greedy Wrapper took us around
four days in comparison with less than an hour for the Best-
Gain. For a larger set of features and a consequent larger
selection, the computing time for the Wrapper will become
prohibitive.

The GAS-E algorithm is the fastest, taking just a few sec-
onds to select the features. However, it is necessary to first
create a Kendall τ correlation matrix with the correlation
between all pairs of features. This matrix took in average
183 minutes to create. Additionally, the GAS-E has two pa-
rameters to tune, the proportion between the relevance and

redundancy of the features and the threshold of the stop
condition. The first parameter requires extra tests to tune,
not necessary on the BestGain or the Wrapper that have
only the second parameter to tune. If we count the overall
computing time, the BestGain algorithm is the fastest of the
three.

5.4 Discussions
For an easier comparison between the algorithms and the

Baseline, Figures 1(a) and 1(b) combine the relevance values
in the y-axis, MAP and NDCG@10, with the number of
features in the x-axis. These values are the averages between
all three datasets. Our goal is to find the algorithm closest
to the upper left corner of the figures, i.e. the one creating
ranking models with the best relevance and the minimum
number of features. The results show that:

1. More features do not lead to better results. At most
15% of the features showed to be sufficient to present
as good results as with all the features, for a statistical
significance level of 0.05 using a paired Student’s t-test.

2. The three tested algorithms designed for ranking present
the best relation between the number of features re-
duced and MAP or NDCG@10. The BestGain al-
gorithm achieves the best relation between all algo-
rithms.

3. The GAS-E algorithm selects too many features on the
TD2003 dataset, while the Wrapper algorithm overfits
on the same dataset. Both algorithms have a robust-
ness inferior than the offered by the BestGain.

4. As expected, the Wrapper algorithm is much slower
than the other algorithms due to the learning phase.
The filter algorithms will be the only viable choice
when the number of features grows significantly.
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Figure 1: Comparison of feature selection algo-
rithms evaluated with (a) MAP and (b) NDCG@10.

5. Improving the baselines by removing features is a dif-
ficult task, due to the good optimization performed by
the L2R algorithms.

BestGain estimates rankings independently of the evalu-
ation metric, but only handles binary relevance judgments.
We were expecting that this would have a negative effect on
the creation of ranking models for the OHSUMED dataset,
which contains ternary judgments. Surprisingly, we achieved
better results with NDCG@10 than with MAP. One explana-
tion is that the BestGain heuristic selects the features that
add more relevant documents to the top positions. Thus,
measures such as NDCG@10 and P@10 that only account
for the top positions are more likely to achieve accurate es-
timates of the combined rankings.

6. FURTHER EXPERIMENTS
At the end of the previous experiment, we expected to

find the more relevant and discriminating features occurring
in all the ranking models of a dataset and between datasets.
Five ranking models were created for each dataset given the
five-fold cross validation adopted in the evaluation method-
ology. We also expected to find the typical number of fea-
tures of a good ranking model. This knowledge would enable
us to have a better understanding of the datasets and the
features that have influence on them. As result, we could
engineer more precise ranking models. Results derived from
the BestGain algorithm confirmed only part of our expecta-
tions.

Table 3 shows the number of features selected for the five
ranking models created from each dataset. For instance,
two close datasets sharing the same collection, TD2003 and

dataset
ranking model

1 2 3 4 5
TD2003 9 11 9 10 10
TD2004 3 2 2 2 2

OHSUMED 1 1 1 1 1

Table 3: Number of features selected.

dataset
# of repetitions

5x 4x 3x 2x 1x
TD2003 2 1 5 8 4
TD2004 1 0 1 0 3

OHSUMED 0 0 1 0 2

Table 4: Number of features repeated across the
models of the same dataset.

TD2004, have ranking models sizes from two to eleven fea-
tures. The variance across models of the same dataset is
only of two features.

We analyzed the regularity of features selected across rank-
ing models created for the same dataset. Table 4 details
that two features are repeated in five ranking models for
the TD2003 dataset and one in four models. There is some
overlap of features between models, nevertheless the major-
ity only occurs once or two.

Analyzing the overlap between the features across rank-
ing models of different datasets showed us a weak repetition
(see Table 5). Only one feature occurs on the ten ranking
models. We only analyzed the intersection between TD2003
and TD2004, because OHSUMED has different features and
fields, which are not comparable. The overlap between both
datasets identifies the most relevant and robust features,
detailed in Table 6 (see description in [16]). A shallow anal-
ysis over the top ten most repeated features, indicates that
propagation algorithms and term weighting functions, such
as BM25 applied over the title and anchors, are prevalent.
Features based on the URLs are not present. This result
is in conformity with Kang and Kim, which conclude that
URL information is poor for topic distillation despite being
relevant for homepage finding tasks [10].

The overall results show that there is a high variance in
the ranking models automatically produced, which suggests
that differences in data and query sets can strongly bias the
choice of the best ranking model. Thus, a unique ranking
model can hardly give good results for all type of queries
in generic web search engines. One alternative is to pick a
ranking model according to the query type [4, 10]. However,
it is often hard to classify queries due to their small number
of terms.

7. CONCLUSIONS
We used LETOR to study feature selection algorithms for

ranking, with the goal of minimizing the number of features,
while keeping the results’ relevance. We studied seven algo-
rithms, three of which are designed for ranking and four for
classification. The results achieved with the algorithms de-
signed for ranking are generally superior. The results of our
supervised algorithm, called BestGain, are superior on aver-
age to all the others, measured with MAP and NDCG@10,
over three different datasets. The results also show that with



dataset
# of repetitions

10x 9x 8x 7x 6x 5x 4x 3x 2x 1x
TD2003 ∩ TD2004 1 0 0 0 1 0 1 7 8 3

Table 5: Number of features repeated across the
models of the TD2003 and TD2004 datasets.

ranking feature # of repetitions
HostRank 10

Sitemap based term propagation 6

LMIR.JM of extracted title 4

Table 6: Most repeated features.

a small set of criteriously selected features, 15% at most,
we can achieve equally good relevance than when using all
the features. This emphasizes the major drawback of L2R
algorithms: they unnecessarily produce large dimensional
models.

We studied the variations between the resulting ranking
models produced over all datasets. We discovered that mod-
els vary in size and on the features selected, even when
the datasets are closely related. There is a high sensitiv-
ity to query set changes, which indicates that a single rank-
ing model for generic web search engines tends to perform
badly. This also confirms that a ranking model tuned with
a test collection, such as the ones from TREC, will proba-
bly present poor results in a real searching system. Future
L2R algorithms should contemplate in their fitness or loss
functions the robustness of models, using measures such as
query-level stability [11] or Geometric Mean Average Preci-
sion (GMAP) [20].
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