

Arquivo.pt image search $2020 \rightarrow 2021$

February 9th 2021

André Mourão R&D engineer <u>andre.mourao@fccn.pt</u>

Why does image search matter?

sparktoro.com/blog/new-jumpshot-2018-data-where-searches-happen-on-the-web-google-amazon-facebook-beyond/

1 in 4 web searches is for images

sparktoro.com/blog/new-jumpshot-2018-data-where-searches-happen-on-the-web-google-amazon-facebook-beyond/

What about Arquivo.pt?

Unique pageviews per service: 2020/04/20 - 2020/05/20

Arquivo.pt Google Analytics

What about Arquivo.pt?

Arquivo.pt Image Search (as of Jan 2020)

Arquivo.pt APIs

- Arquivo.pt makes **8,000+ milion pages** e **22*+ million images** available for visualization and search:
 - Archived web pages -> **Text Search API**/Memento/CDX Server
 - Text and metadata search -> Text Search API
 - Image search -> Image Search API
- Available for the general public
- Open Source
- https://github.com/arquivo/pwa-technologies/wiki/APIs

Arquivo.pt Image Search (as of Jan 2020)

Indexed images	22 million
Collection count	90
(W)ARCs	3 million
(W)ARC sizes	334 TB
Total collected files	6,000 million
Total collected images	1,602 million
Oldest image date	15/04/1994
Newest image date	14/11/2019
Daily page views	~87

Opportunities for improvement

- Lack of image specific metadata
 - 43% (10,163,080 images) without imgAlt or imgTitle
- Why is the difference between collected and indexed so large?
- Only the oldest page per image is indexed
- Search result ranking does not take image popularity into account

Finding images in pages results

• tag attributes

- <a> tag attributes
- Inline CSS background images
- Inline base64 images
- Images set by JS
- <figure>, <picture>

Percentage of references

	90.6%
<a>	8.7%
CSS	0.7%
Normal images	99.9%
base64	0.1%

Finding an image caption

(a) Image segments 1 - 9

Fauzi, Fariza & Hong, Jer Lang & Belkhatir, Mohammed. (2009). Webpage segmentation for extracting images and their surrounding contextual information. 649-652. 10.1145/1631272.1631379.

Sadet, Alcic & Conrad, Stefan. (2011). A Clustering-based Approach to Web Image Context Extraction. MMEDIA - International Conferences on Advances in Multimedia.

Image caption extraction

I arrived at the following method

First parent with text

- Default method
- Works well for images in boxes or *reasonably* structured pages

Image caption extraction

I arrived at the following method

First parent with text

- Default method
- Works well for images in boxes or *reasonably* structured pages

Previous and next node text

- Used if the first parent with text is at the level of the page with more siblings
- List of images as in a blog

Image caption extraction

I arrived at the following method

First parent with text

- Default method
- Works well for images in boxes or *reasonably* structured pages

Previous and next node text

- Used if the first parent with text is at the level of the page with more siblings
- List of images as in a blog

Indexing Architecture

Map Reduce: Extract images and metadata

How to deal with duplicate information?

- The amount of data produced by this step is huge!
- Generating a lot of documents for indexing
- But most of this information is duplicate
 - Images and pages that were crawled at different times but have not changed
 - References to the images that have the same caption/metadata

Deduplication selected solution

- After careful examination, we arrived at the 3 deduplication scenarios:
 - a. every page-image pair is a document
 - b. the oldest page that references the image is the canonical document
 - c. oldest page information and image specific information from all pages
 - keep reference to oldest page
 - Add all new image specific information (title, alt, caption) to the document
 - replace oldest page reference if a new oldest document shows up

Map Reduce: Group by digest

Duplicates across collections

- Hadoop processing is performed across per collection
 - To better manage computing resources (e.g. HDFS disk space)
 - Thus, deduplication is only performed on a per-collection basis
- We added an extra "group by digest" step when sending docs to Solr

My predictions in May 2020

Arquivo.pt Image Search (as of Jan 2020)

Indexed images	22 million
Collection count	90
(W)ARCs	3 million
(W)ARC sizes	334 TB
Total collected files	6,000 million
Total collected images	1,602 million
Oldest image date	15/04/1994
Newest image date	14/11/2019
Daily page views	~87

Tested collections - number of images

			Diff New to	
Collection	Old Parser	New Parser	Current Rat	tio vs New
AWP24	865,589	14,133,997	+13,268,408	16.33
AWP15	552,275	26,127,269	+25,574,994	47.31
FAWP26	213,527	1,562,617	+1,349,090	7.32
Tomba	169,308	1,076,967	+907,659	6.36
BlogsSapo2018	71,668	752,679	+681,011	10.50
Weblog	6,336	87,252	+80,916	13.77
DinisAlves2018	1,215	1,216	+1	1.00
DEM-IST	191	360	+169	1.88
BlocoEsquerda	15	16	+1	1.07 23

~200-650 million images 1,880,124 -> 43,742,373 ~9-28x more images

~200-650 million images ~9-28x more images

654 million images **29x** more images

Takeways + **317 million** images in one year (2019) 1,880,124 -> 43,742,373 23,58**48%** growth???

971 million images 1,880,124 -> 43,742,373 **42x** more images

Impact of deduplication

	Number of documents
а	1,862 million image-page pair documents
b	584 million unique documents (971 million before deduplication across collections)
С	584 million documents, containing information from all 1,862 million image-page pairs

How will we index these 584 million documents?

Current Solr indexing architecture

Current image index has **31 million** documents (22 million plus some special crawls we added in 2020)

on one 20 core, 40 thread server with 512 GB RAM (one server per branch, two redundant branches)

running Solr 6.3 with a 735 GB index

What to do with new data?

Our indexing process resulted in

584 million documents

(expected index size: ~720GB)

Where will we fit all this data?

Arquivo.pt response time guidelines

The 355 rule

- 3 responses per second
- With an average query time **below 5 seconds**
- For **5 concurrent users**
- We are currently performing these experiments

Planning SolrCloud resource allocation

- Expected index size: ~720GB
- SolrCloud servers:
 - 8 servers, 4 per branch
 - **512GB**: p87, p91 (20/40 cores/threads)
 - **256GB**: p82, p83 (12/24 c/t), p93, p94, p98, p99 (20/40 c/t)
 - 2560GB total, 1280GB per branch
- No SSD, only HDD, but we have more RAM than indexed data

How we configured SolrCloud? - Try 1

solr1	solr2	solr3	solr4		
shard1	shard2	shard3	shard4		
125 GB 97M documents	125 GB 97M documents	125 GB 97M documents	125 GB 97M documents		

How to test?

- Search with increasing concurrent users
 1, 3, 5, 10, 20, 50 concurrent users
- For a set period of time
 5 minutes

How to select realistic queries?

- Two sets of queries:
 User queries extracted from logs
 Random pairs of Portuguese words
- Warmup the index using 50 queries
- Query for 5 minutes and parse the results

(Fresh off the press) results

Single user, random queries (pairs of portuguese words)

Label	# Samples	Average	Median	90% Line	95% Line	99% Line	Min	Maximum	Error %	Throughput
HTTP Requ	1004	322	380	460	500	691	50	3477	0.00%	2.5/se

50 users, random queries (pairs of portuguese words)

Label	# Samples	Average	Median	90% Line	95% Line	99% Line	Min	Maximum	Error %	Throughp
HTTP Req	5066	2726	2769	4856	5304	6210	25	9090	2.17%	16.8/sec

Tips and parameters

- vmtouch tool to force OS to keep index files in RAM
- Heap size: 31GB
 - Smaller sizes made Solr crash on parallel query situations
 - Larger sizes means Java can't use compressed pointers <u>https://lucene.apache.org/solr/guide/8_7/taking-solr-to-produc</u> <u>tion.html#running-multiple-solr-nodes-per-host</u>

How we configured SolrCloud? - Plan

...

• • •

...

...

How we configured SolrCloud? - Plan

Future problems: Migrate page search to SolrCloud ARQUIVO.PT

- Currently, we have an highly customized version of Lucene optimized not to search the full posting lists
- Scale
 - 6-7,000 million documents
 - 5 servers with 4.5TB of RAM in total

Summary of what changed in 2020?

- More metadata per image
 - All pages that mention the image are parsed
 - Heuristic extraction of image captions from the HTML page structure
 - Additional features extracted from the HTML and images
- Improved NSFW image processing
 - 7x faster processing (40 -> 280 images per second)
 - Returns more image information for ranking (e.g. drawing vs. photo)
- Improved indexing architecture and processing
 - Removed MongoDB dependency
 - Ensure all archived images and pages are parsed
 - Find images in <a> links, CSS and JS code
- Distributed search index
 - Transition from single node Solr to distributed SolrCloud architecture
 - \circ Improved schema so that the index only grows by 32% when covering 81x more images $_{43}$

Plan for the future

- Deal with images that have **no metadata**
 - Cannot find pages for 300+ million images
 - Deep Image classification, tag extraction
- Content based hashes
 - Similar images show up all over the place (different resolutions and formats)
 - Find and deduplicate **near duplicates**
- Improve Solr ranking
 - Use the newly extracted popularity features

Ranking features for 2021

imgCaption

• portion of the HTML page text that is closest to the image

matchingImages

• number of times the image was crawled (by image content digest)

matchingPages

 number of times the image was referenced on <*img*> tags, css or JS

imagesInOriginalPage

• number of images in the oldest page

imageMetadataChanges

• number of times that the image metadata (alt, title or caption) changes

pageMetadataChanges

• number of times that the page metadata (title) changes

drawing/photo

• whether the image is a drawing or a photo